Modelling and Integration for SDG-Oriented Planning in the Developing World

Camaren Peter (PhD)

Extraordinary Senior Lecturer, School of Public Leadership, University of Stellenbosch

Characteristics of Sustainable Development Challenges in the Developing World

- Dual formal and informal systems.
- Rapid urbanisation (without industrialisation).
- High rates of change and uncertainty: 'glocal' interactions play a key role.
- Poverty, inequality, precarious households.
- Infrastructure deficits: a limitation and opportunity.
- Spending and finance gaps at local levels.
- Lack of capacity for planning at local levels (especially integrated planning).

Decision Support and Modelling Challenges in Developing World Contexts

- Lack or absence of adequate, timely data.
- Often, only expert opinion and judgement available to work with.
- Lack of institutional capacity, skills and expertise to support detailed modelling.
- Lack of internet access and computing power.
- Conflicting agenda's and interests drive development agendas.
- Fragmentation: Sectors, government departments, local authorities work in silo's.

Summary:

- Both sustainable development challenges, as well as modelling them

 especially in developing world contexts are *complex* systems
 challenges.
- Swimming in an ocean versus swimming in a pool.

Complexity-Based Modelling of Transitions to SD

- Applying complexity theory to four broad theories of transitions to sustainability:
 - Decoupling theory.
 - Resilience theory.
 - Multi-level perspective on transitions to SD.
 - Behavioural change theory.

*Peter, C. and M. Swilling: Linking Complexity and Sustainability Theories: Implications for Modelling Sustainability Transitions; *Sustainability*, 6, pp. 1594-1622, 2014.

Complexity-Based Modelling of Transitions to SD

- The basis of the modelling (and planning) process should be (Peter and Swilling, 2014):
 - Probabilistic and adaptive:
 - Accommodate multiple possible futures (e.g. scenarios), and
 - System configurations (adaptive capacity, degeneracy, redundancy).
 - Integrative:
 - Cross-sector and cross-scale, where relevant.
 - Can accommodate quantitative and qualitative inputs.
 - Inclusive:
 - Inclusivity informs integration encourages shared understanding.
 - Determining actions through shared understanding of system (and priorities, conflicts, etc.).
 - Dealing with undecidability shared understanding of what generates undecidability can inform discussions regarding potential trade-offs, etc.
 - Adaptive capacity boosted through inclusivity.
 - Creative capacity boosted through inclusivity.

Soft and Hard Systems Modelling

- Two broad levels of integration:
 - Soft: mix of qualitative and quantitative data and methods used in contexts where uncertainty about the system is greater and integration criteria are less well understood.
 - Soft Systems Modelling:
 - Causal loop diagrams.
 - Graphical causal models (GCMs), topic maps, decision trees, etc.
 - Bayesian networks (BNs): can mix quantitative and qualitative information.
 - Hard: mainly quantitative and numerical methods used in contexts where there is greater certainty about the system and integration criteria are better understood.
 - Systems dynamics modelling (SD) and agent-based SD.
 - Sector models (e.g. economic, agricultural, energy, water, etc.).
 - Spatial and system models (e.g. hydrological, land-use, spatio-temporal vegetation change, climate change, etc.).

Soft and Hard Systems Modelling

- Key Challenge: Linking soft and hard systems modelling efforts is critical for adaptive management of sustainable development efforts.
- This is because development is an iterative process of intervening, monitoring and measuring, and adapting plans as they are implemented i.e. we are dealing with a complex, adaptive system.
- Usually conducted within the mind(s) of a modelling expert or team of modelling experts – hampers full participation in adaptive management processes.

ADAPTIVE MANAGEMENT DECISION SUPPORT PROCESS

Bringing Soft and Hard Systems Modelling Efforts Together: A More Powerful Approach

- Why Bayesian Networks as Integrators:
 - Probabilistic: non-linearity, forward and backward propagation.
 - Conditional causality: hypotheses testing i.e. for interventions.
 - Mix of quantitative and qualitative data/information; even subject matter expert opinion.
 - Inclusivity: easy to understand by non-scientists.
 - Cross-scale: supports modelling at nested scales i.e. vertical integration.
 - Cross-sector: i.e. horizontal integration.
 - Adaptable and modular can support adaptive management programmes.
- Hence can manage integration between soft and hard modelling efforts better (i.e. more trace-ably, iteratively and reliably).

CAUSAL LOOP MODEL

BAYESIAN NETWORK WITH PROBABILITY DISTRIBUTIONS

Converting SME opinion to probabilities

E C1034: BII SCORE LIGHT USE?															X				
*C_C904 *C_C904 / 1000000 + 0.1 *C_C904 / 10000 + 0.1 * Cancel OK															^				
ssion 🗌 Ignore negative states 🛛 Parse 🗋 Normalise																			
Build Suggestion																			
C_C904?	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	
0-0.05	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	<mark>1.0</mark>
0.05-0.1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	<mark>1.0</mark>
0.1-0.15	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	1.0
0.15-0.2	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.0
0.2-0.25	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	1.000000	0.0
0.25-0.3	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.0
0.3-0.35	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	1.000000	0.000000	0.0
0.35-0.4	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.0
0.4-0.45	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	1.000000	0.000000	0.000000	0.0
0.45-0.5	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	1.000000	0.000000	0.000000	0.000000	0.0
0.5-0.55	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	0.000000	0.000000	0.000000	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.0
0.55-0.6	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
0.6-0.65	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	1.000000	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
0.65-0.7	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	1.000000	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
0.7-0.75	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
0.75-0.8	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
0.8-0.85	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
0.85-0.9	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
0.9-0.95	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
0.95-1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	0.000000	0.0

Examples of Systems-Modelling Projects

- Catchment2Coast (EU Fifth Framework):
 - <u>http://www.iospress.nl/book/catchment2coast-a-systems-approach-to-coupled-river-coastal-ecosystem-science-and-management/</u>
- SPEAR (Sustainable options for PEople, catchment and Aquatic Resources, EU 6th Framework):
 - <u>http://www.longline.co.uk/site/spear.pdf</u>

References:

- Peter, C. and M. Swilling: Linking Complexity and Sustainability Theories: Implications for Modelling Sustainability Transitions; *Sustainability*, 6, pp. 1594-1622, 2014.
- Peter, C., de Lange, W., Musango, J.K., April, K., Potgieter, A.G.E. (2009). Applying Bayesian modelling to assess climate change impacts on biofuel production, *Climate Research*, CR Special 20: Integrating analysis of regional climate change and response options, v 20, pp. 249-260.
- Richardson, K.A. (2002). On the limits of bottom-up computer simulation: Towards a nonlinear modelling culture [electronic version]. Proceedings of the 36th Hawaii International Conference on System Sciences, 7-10 January, 2003 Hawaii, California, IEEE Computer Society.
- Peterson, G.D., Cumming, G.S., & Carpenter, S.R. (2003). Scenario planning: a tool for conservation in an uncertain world [electronic version]. *Conservation Biology*, 17(2), 358-366.
- Borsuk, M. E., Stow, C. A. and Reckhow, K. H. (2004). A Bayesian network of eutrophication models for synthesis, prediction and uncertainty analysis, *Ecological Modelling*, ISSN 0304-3800, 173, 219-239.
- Checkland, P.B., & Scholes, J. (1990). Soft systems methodology in action. Wiley, Chichester.
- Vitabile, S. et al. (2013) Assessing Coastal Sustainability: A Bayesian Approach for Modelling and Estimating a Global Index for Measuring Risk, Journal of Telecommunications and Information Technology, Available online: <u>http://www.nit.eu/czasopisma/JTIT/2013/4/5.pdf</u>.
- Clark, K. (2005). Why environmental scientists are becoming Bayesians. *Ecology Letters*, 8, 2–14.